А. Г. Храмцов
Северо-Кавказский федеральный университет 355009, Россия, Ставрополь, ул. Пушкина, д. 1
Храмцов Андрей Георгиевич, доктор технических наук, профессор, академик РАН, профессор-консультант кафедры прикладной биотехнологии
E-mail: akhramtcov@ncfu.ru; тел.: 89624477823
Н. Я. Дыкало
АО Молочный комбинат «Ставропольский» 355037, Россия, Ставрополь, ул. Доваторцев, д. 36
Е-mail: mokostav@mail.ru
Дыкало Николай Яковлевич
С. С. Школа
Северо-Кавказский федеральный университет 355009, Россия, Ставрополь, ул. Пушкина, д. 1
Школа Сергей Сергеевич
А. И. Еремина
Северо-Кавказский федеральный университет 355009, Россия, Ставрополь, ул. Пушкина, д. 1
Е-mail: eremina93@yandex.ru
Еремина Анастасия Игоревна
Г. С. Анисимов
Северо-Кавказский федеральный университет 355009, Россия, Ставрополь, ул. Пушкина, д. 1
Е-mail: ags88@mail.ru
Анисимов Георгий Сергеевич
А. В. Рудковский
АО Молочный комбинат «Ставропольский» 355037, Россия, Ставрополь, ул. Доваторцев, д. 36
Е-mail: RAV08@MAIL.RU
Рудковский Александр Владимирович
About the Authors
A. G. Khramtsov
North-Caucasus Federal University 1, Pushkin st., Stavropol, 355009, Russian Federation
Andrey G. Khramtsov, Dr Technical Sci., Professor, Academician of RAS and Professor-consultant of the Department of Applied Biotechnology
E-mail: akhramtcov@ncfu.ru; tel.: +79624477823
N. Ya. Dykalo
Dairy Company Stavropolskiy 36, Dovatortsev st., Stavropol, 355037, Russian Federation
Е-mail:mailto:yudina_lizochka2000@mail.ru mokostav@mail.ru
Nikolai Ya. Dykalo
S. S. Shkola
North-Caucasus Federal University 1, Pushkin st., Stavropol, 355009, Russian Federation
Sergey S. Shkola
A. I. Eremina
North-Caucasus Federal University 1, Pushkin st., Stavropol, 355009, Russian Federation
Е-mail: eremina93@yandex.ru
Anastasia I. Eremina
G. S. Anisimov
North-Caucasus Federal University 1, Pushkin st., Stavropol, 355009, Russian Federation
Е-mail:mailto:yudina_lizochka2000@mail.ru ags88@mail.ru
Georgy S. Anisimov
A. V. Rudkovskii
Dairy Company Stavropolskiy 36, Dovatortsev st., Stavropol, 355037, Russian Federation
Е-mail: RAV08@MAIL.RU
Alexander V. Rudkovskii
1. Рябцева С.А., Храмцов А.Г., Будкевич Р.О., Анисимов Г.С., Чукло А.О., Шпак М.А. Физиологические эффекты, механизмы действия и применение лактулозы // Вопросы питания. 2020. Т. 89, № 2. С. 5-20. https://doi.org/10.24411/0042-8833-2020-10012.
2. Keisuke Yoshida, Rika Hirano, Yohei Sakai, Moonhak Choi, Mikiyasu Sakanaka, Shin Kurihara, Hisakazu Iino, Jin-zhong Xiao, Takane Katayama, Toshitaka Odamaki Bifidobacterium response to lactulose ingestion in the gut relies on a solute-binding protein-dependent ABC transporter // Communications Biology. 2021. Vol. 4, iss. 1. Article number: 541. https://doi.org/10.1038/s42003-021-02072-7.
3. Конн Г.О., Либертал М.М. Синдромы печеночной комы и лактулоза. Москва: Медицина, 1983. 516 с.
4. Tarkan Karakan, Kieran Michael Tuohy, Gwendolyn Janssen-van Solingen Low-Dose Lactulose as a Prebiotic for Improved Gut Health and Enhanced Mineral Absorption // Frontiers in Nutrition. 2021. Issue 8. Article number: 672925. https://doi.org/10.3389/fnut.2021.672925.
5. Yohei Sakai, Nobuo Seki, Hirokazu Hamano, Hiroshi Ochi, Fumiaki Abe, Fumiko Shimizu, Kazuya Masuda, Hisakazu Iino A study of the prebiotic effect of lactulose at low dosages in healthy Japanese women // Bioscience of Microbiota Food and Health. 2018. Vol. 38, iss. 2. P. 69-72. http://doi.org/10.12938/bmfh.18-013.
6. Pool-Zobel B.L., Selvaraju V., Sauer J., Kautenburger T., Kiefer J., Richter K.K. et al. Butyrate may enhance toxicological defence in primary, adenoma and tumor human colon cells by favourably modulating expression of glutathione S-transferases genes, an approach in nutrigenomics // Carcinogenesis. 2005. Vol. 26. P. 1064-1076. http://doi.org/10.1093/carcin/bgi059.
7. Parada Venegas D., De la Fuente M.K., Landskron G., Gonzalez M.J., Quera R., Dijkstra G. et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases // Front. Immunol. 2019. Issue 10. Article number: 277. http://doi.org/10.3389/fimmu.2019.01486.
8. Den Besten G., van Eunen K., Groen A.K., Venema K., Reijngoud D.-J., Bakker B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism // Journal of Lipid Research. 2013. Vol. 54, iss. 9. P. 2325-2340. http://doi.org/10.1194/jlr.R036012.
9. Macfarlane G.T., Steed H., Macfarlane S. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics // Journal of Applied Microbiology. 2008. Vol. 104, iss. 2. P. 305-344.
10. Sauer J., Richter K.K., Pool-Zobel B.L. Physiological concentrations of butyrate favorably modulate genes of oxidative and metabolic stress in primary human colon cells // Journal of Nutritional Biochemistry. 2007. Vol. 18, issue 11. P. 736-745. http://doi.org/10.1016/j.jnutbio.2006.12.012.
11. Schott E.M., Farnsworth C.W., Grier A., Lillis J.A., Soniwala S., Dadourian G.H. et al. Targeting the gut microbiome to treat the osteoarthritis of obesity // JCI Insight. 2018. Vol. 8, issue 3. Article number: e95997. http://doi.org/10.1172/jci.insight.95997.
12. Biver E., Berenbaum F., Valdes A.M., Araujo de Carvalho I., Bindels L.B., Brandi M.L. et al. Gut microbiota and osteoarthritis management: an expert consensus of the European society for clinical and economic aspects of osteoporosis, osteoarthritis and musculoskeletal diseases (ESCEO) // Ageing Research Reviews. 2019. Vol. 55. Article number: 100946. http://doi.org/10.1016/j.arr.2019.100946.
13. Byrne C.S., Chambers E.S., Morrison D.J., Frost G. The role of short chain fatty acids in appetite regulation and energy homeostasis // International Journal of Obesity. 2015. Vol. 39, iss. 9. P. 1331-1338. http://doi.org/10.1038/ijo.2015.8.
14. Scholz-Ahrens K.E., Schaafsma G., van den Heuvel E.G., Schrezenmeir J. Effects of prebiotics on mineral metabolism // American Journal of Clinical Nutrition. 2001. Vol. 73, iss. 2. P. 459s-464s. http://doi.org/10.1093/ajcn/73.2.459s.
15. Van den Heuvel E.G.H.M., Weidauer T. Role of the non-digestible carbohydrate lactulose in the absorption of calcium // Med Sci Monit. 1999. Issue 5. P. 1231-1237.
16. Бельмер C.В. Роль кишечной микрофлоры в обеспечении организма фолиевой кислотой, витаминами В12 и К // Вопросы современной педиатрии. 2005. Т. 4, № 5. С. 74-76.
17. D'Amelio P., Sassi F. Gut microbiota, immune system, and bone // Calcif Tissue Int. 2018. Vol. 102, iss.4. P. 415-425. https://doi.org/10.1007/s00223-017-0331-y.
18. Tatsuya Ishizu, Eri Takai, Suguru Torii and Motoko Taguchi Prebiotic Food Intake May Improve Bone Resorption in Japanese Female Athletes: A Pilot Study // Sports. 2021. Vol. 9, iss. 6. Article number: 82. https://doi.org/10.3390/sports9060082.
19. Hardy R., Cooper M.S. Bone loss in inflammatory disorders // Journal of Endocrinology. 2009. Vol. 201, iss. 3. P. 309-320. https://doi.org/10.1677/JOE-08-0568.
20. Tousen Y., Matsumoto Y., Nagahata Y., Kobayashi I., Inoue M., Ishimi Y. Resistant starch attenuates bone loss in ovariectomised mice by regulating the intestinal microbiota and bone-marrow inflammation // Nutrients. 2019. Vol. 11, iss. 2. Article number: 297. https://doi.org/10.3390/nu11020297.
21. Tanabe K., Nakamura S., Moriyama-Hashiguchi M., Kitajima M., Ejima H., Imori C. et al. Dietary fructooligosaccharide and glucomannan alter gut microbiota and improve bone metabolism in senescence-accelerated mouse // Agric Food Chem. 2019. Vol. 67, iss. 3. P. 867-874. https://doi.org/10.1021/acs.jafc.8b05164.
22. Liu H., Gu R., Zhu Y., Lian X., Wang S., Liu X. et al. D-mannose attenuates bone loss in mice via Treg cell proliferation and gut microbiota-dependent anti-inflammatory effects // Therapeutic Advances in Chronic Disease. 2020. Vol. 11. P. 1-17. https://doi.org/10.1177/2040622320912661.
23. Mukherjee S., John S. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan. 2021 Jul. 19.
24. Clausen M.R., Mortensen P.B. Lactulose, disaccharides and colonic flora. Clinical consequences // Drugs. 1997. Vol. 53, iss. 6. P. 930-942. https://doi.org/10.2165/00003495-199753060-00003.
25. Young V.B. and Schmidt T.M. Antibiotic-Associated Diarrhea Accompanied by Large-Scale Alterations in the composition of the Fecal Microbiota // Journal of Clinical Microbiology. 2004. Vol. 42, iss. 3. P. 1203-1206. https://doi.org/10.1128/JCM.42.3.1203-1206.2004.
26. Ярцева Н.В., Долганова Н.В., Алексанян И.Ю., Нугманов А.Х.-Х. Пребиотик «Лактулоза Премиум» как перспективная функциональная добавка в рыбный фарш // Индустрия питания. 2020. Т. 5, № 3. С. 25-34. https://doi.org/10.29141/2500-1922-2020-5-3-3.
27. Горлов И.Ф., Сложенкина М.И. Применение лактулозусодержащих препаратов в животноводстве и при переработке животноводческой продукции: монография. Волгоград: Сфера, 2020. 152 с.
References
1. Ryabtseva S.A., Khramtsov A.G., Budkevich R.O., Anisimov G.S., Chuklo A.O., Shpak M.A. Physiological effects, mechanisms of action and application of lactulose. Voprosy` pitaniya = Problems of nutrition. 2020;89(2):5-20. (In Russ.). https://doi.org/10.24411/0042-8833-2020-10012.
2. Keisuke Yoshida, Rika Hirano, Yohei Sakai, Moonhak Choi, Mikiyasu Sakanaka, Shin Kurihara, Hisakazu Iino, Jin-zhong Xiao, Takane Katayama, Toshitaka Odamaki Bifidobacterium response to lactulose ingestion in the gut relies on a solute-binding protein-dependent ABC transporter. Communications Biology. 2021;4(1):541. https://doi.org/10.1038/s42003-021-02072-7.
3. Conn G.O., Libertal M.M. Syndromes of hepatic coma and lactulose. Moscow: Medicine Publ.; 1983. 516 p. (In Russ.).
4. Tarkan Karakan, Kieran Michael Tuohy, Gwendolyn Janssen-van Solingen Low-Dose Lactulose as a Prebiotic for Improved Gut Health and Enhanced Mineral Absorption. Frontiers in Nutrition. 2021;(8):672925. https://doi.org/10.3389/fnut.2021.672925.
5. Yohei Sakai, Nobuo Seki, Hirokazu Hamano, Hiroshi Ochi, Fumiaki Abe, Fumiko Shimizu, Kazuya Masuda, Hisakazu Iino A study of the prebiotic effect of lactulose at low dosages in healthy Japanese women. Bioscience of Microbiota Food and Health. 2018;38(2):69-72. http://doi.org/10.12938/bmfh.18-013.
6. Pool-Zobel B.L., Selvaraju V., Sauer J., Kautenburger T., Kiefer J., Richter K.K. et al. Butyrate may enhance toxicological defence in primary, adenoma and tumor human colon cells by favourably modulating expression of glutathione S-transferases genes, an approach in nutrigenomics. Carcinogenesis. 2005;(26):1064-1076. http://doi.org/10.1093/carcin/bgi059.
7. Parada Venegas D., De la Fuente M.K., Landskron G., Gonzalez M.J., Quera R., Dijkstra G. et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;(10):277. http://doi.org/10.3389/fimmu.2019.01486.
8. Den Besten G., van Eunen K., Groen A.K., Venema K., Reijngoud D.-J., Bakker B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research. 2013;54(9):2325-2340. http://doi.org/10.1194/jlr.R036012.
9. Macfarlane G.T., Steed H., Macfarlane S. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. Journal of Applied Microbiology. 2008;104(2):305-344.
10. Sauer J., Richter K.K., Pool-Zobel B.L. Physiological concentrations of butyrate favorably modulate genes of oxidative and metabolic stress in primary human colon cells. Journal of Nutritional Biochemistry. 2007;18(11):736-745. http://doi.org/10.1016/j.jnutbio.2006.12.012.
11. Schott E.M., Farnsworth C.W., Grier A., Lillis J.A., Soniwala S., Dadourian G.H. et al. Targeting the gut microbiome to treat the osteoarthritis of obesity. JCI Insight. 2018;8(3):e95997. http://doi.org/10.1172/jci.insight.95997.
12. Biver E., Berenbaum F., Valdes A.M., Araujo de Carvalho I., Bindels L.B., Brandi M.L. et al. Gut microbiota and osteoarthritis management: an expert consensus of the European society for clinical and economic aspects of osteoporosis, osteoarthritis and musculoskeletal diseases (ESCEO). Ageing Research Reviews. 2019;(55):100946. http://doi.org/10.1016/j.arr.2019.100946.
13. Byrne C.S., Chambers E.S., Morrison D.J., Frost G. The role of short chain fatty acids in appetite regulation and energy homeostasis. International Journal of Obesity. 2015;39(9):1331-1338. http://doi.org/10.1038/ijo.2015.8.
14. Scholz-Ahrens K.E., Schaafsma G., van den Heuvel E.G., Schrezenmeir J. Effects of prebiotics on mineral metabolism. American Journal of Clinical Nutrition. 2001;73(2):459s-464s. http://doi.org/10.1093/ajcn/73.2.459s.
15. Van den Heuvel E.G.H.M., Weidauer T. Role of the non-digestible carbohydrate lactulose in the absorption of calcium. Med Sci Monit. 1999;(5):1231-1237.
16. Belmer S.V. The role of intestinal microflora in providing the body with folic acid, vitamins B12 and K. Voprosy` sovremennoj pediatrii = Current Pediatrics. 2005;4(5):74-76. (In Russ.).
17. D'Amelio P., Sassi F. Gut microbiota, immune system, and bone. Calcif Tissue Int. 2018;102(4):415-425. https://doi.org/10.1007/s00223-017-0331-y.
18. Tatsuya Ishizu, Eri Takai, Suguru Torii and Motoko Taguchi Prebiotic Food Intake May Improve Bone Resorption in Japanese Female Athletes: A Pilot Study. Sports. 2021;9(6):82. https://doi.org/10.3390/sports9060082.
19. Hardy R., Cooper M.S. Bone loss in inflammatory disorders. Journal of Endocrinology. 2009;201(3):309-320. https://doi.org/10.1677/JOE-08-0568.
20. Tousen Y., Matsumoto Y., Nagahata Y., Kobayashi I., Inoue M., Ishimi Y. Resistant starch attenuates bone loss in ovariectomised mice by regulating the intestinal microbiota and bone-marrow inflammation. Nutrients. 2019;11(2):297. https://doi.org/10.3390/nu11020297.
21. Tanabe K., Nakamura S., Moriyama-Hashiguchi M., Kitajima M., Ejima H., Imori C. et al. Dietary fructooligosaccharide and glucomannan alter gut microbiota and improve bone metabolism in senescence-accelerated mouse. Agric Food Chem. 2019;67(3):867-874. https://doi.org/10.1021/acs.jafc.8b05164.
22. Liu H., Gu R., Zhu Y., Lian X., Wang S., Liu X. et al. D-mannose attenuates bone loss in mice via Treg cell proliferation and gut microbiota-dependent anti-inflammatory effects. Therapeutic Advances in Chronic Disease. 2020;(11):1-17. https://doi.org/10.1177/2040622320912661.
23. Mukherjee S., John S. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan. 2021 Jul. 19.
24. Clausen M.R., Mortensen P.B. Lactulose, disaccharides and colonic flora. Clinical consequences. Drugs. 1997;53(6):930-942. https://doi.org/10.2165/00003495-199753060-00003.
25. Young V.B. and Schmidt T.M. Antibiotic-Associated Diarrhea Accompanied by Large-Scale Alterations in the composition of the Fecal Microbiota. Journal of Clinical Microbiology. 2004;42(3):1203-1206. https://doi.org/10.1128/JCM.42.3.1203-1206.2004.
26. Yartseva N.V., Dolganova N.V., Aleksanian I.Yu., Nugmanov A.X.-X. Prebiotic "Lactulose premium" as a promising functional additive in minced fish. Industriya pitaniya = Food Industry. 2020;5(3):25-34. (In Russ.). https://doi.org/10.29141/2500-1922-2020-5-3-3.
27. Gorlov I.F., Slozhenkina M.I. The use of lactulose-containing drugs in animal husbandry and in the processing of animal products: monograph. Volgograd: Sphera Publ.; 2020. 152 p. (In Russ.)